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ABSTRACT
Torsional Alfvén waves in coronal plasma loops are usually considered to be non-collective, i.e. consist of cylindrical
surfaces evolving independently, which significantly complicates their detection in observations. This non-collective
nature, however, can get modified in the nonlinear regime. To address this question, the propagation of nonlinear
torsional Alfvén waves in straight magnetic flux tubes has been investigated numerically using the astrophysical MHD
code Athena++ and analytically, to support numerical results, using the perturbation theory up to the second order.
Numerical results have revealed that there is radially uniform induced density perturbation whose uniformity does
not depend on the radial structure of the mother Alfvén wave. Our analysis showed that the ponderomotive force
leads to the induction of the radial and axial velocity perturbations, while the mechanism for the density perturbation
is provided by a non-equal elasticity of a magnetic flux tube in the radial and axial directions. The latter can be
qualitatively understood by the interplay between the Alfvén wave perturbations, external medium, and the flux tube
boundary conditions. The amplitude of these nonlinearly induced density perturbations is found to be determined by
the amplitude of the Alfvén driver squared and the plasma parameter β. The existence of the collective and radially
uniform density perturbation accompanying nonlinear torsional Alfvén waves could be considered as an additional
observational signature of Alfvén waves in the upper layers of the solar atmosphere.

Key words: MHD – Sun: corona – waves – plasmas – Sun: oscillations

1 INTRODUCTION

Due to the progress in observational techniques and facilities,
various modes of magnetohydrodynamic (MHD) waves are
being confidently detected in the solar atmosphere. In partic-
ular, the existence of upwardly propagating torsional Alfvén
waves have been reported in photospheric bright points (Jess
et al. 2009) and thin chromospheric spicular-type structures
(e.g. Pontieu et al. 2014; Srivastava et al. 2017). Likewise,
there are sporadic reports of torsional Alfvén waves in coro-
nal structures (Kohutova et al. 2020) and of their excitation
during solar flares (Aschwanden & Wang 2020).
Alfvén waves are well-known candidates for transferring

and transporting energy into the solar corona. For example,
in the observation made by Srivastava et al. (2017), the es-
timated energy flux carried by Alfvén waves at the chromo-
spheric layer was reported to be potentially sufficient to com-
pensate radiative losses in the corona (for review of coronal
heating mechanisms by Alfvén waves, see e.g. Van Doorsse-
laere et al. 2020). This is besides the great interest in Alfvén
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waves in the context of providing energy sources for solar
wind acceleration (Banerjee et al. 2021).
The evolution of torsional Alfvén waves in initially uniform

plasmas has been shown to lead to the formation of elongated
over-dense threads in high-resolution 3D ideal MHD simula-
tions, which in turn could act as effective waveguides for other
MHD wave modes (Díaz-Suárez & Soler 2021).
Despite the persistent interest in Alfvén waves in the solar

atmosphere, there are only a few reports of their detection in
the corona (e.g. Kohutova et al. 2020). This is in contrast to
magnetoacoustic (MA) waves which are confidently detected
in the corona in direct imaging, spectroscopic, and indirect
observations as quasi-periodic pulsations in flares (see e.g.
Nakariakov & Kolotkov 2020, for a recent comprehensive re-
view). The reason for this fact is that the detection of Aflvén
waves is more challenging in comparison with MA waves (it
is also instructive to read Verwichte et al. 1999, in this re-
spect). First of all, Alfvén waves are not compressive in the
linear regime and, therefore, do not modulate plasma emis-
sion through density perturbations as essentially compressive
MA waves do. As a result, if the plasma structure is poorly
resolved, the only way to detect linear (with relatively low
amplitude) Alfvén wave is to measure non-thermal Doppler
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broadenings of spectral lines. Analyzing data of periodic non-
thermal variations of line widths in coronal holes and facular
regions in a number of lines, Chelpanov & Kobanov (2022)
considered that these Doppler broadenings should be neces-
sary but not sufficient for unambiguous identification of tor-
sional Alfvén waves in the lower solar atmosphere. Indeed,
for linear Alfvén waves, these broadenings should not be ac-
companied by the correlating intensity variations, which are
more likely to arise due to MA perturbations. A more robust
torsional Alfvén wave observation was made by Jess et al.
(2009) when the detected periodic modulation of spectral line
nonthermal broadening was not accompanied by cospatial in-
tensity oscillations and transversal displacements.

The requirement of absence of the accompanying intensity
modulation is relaxed in the nonlinear case. Indeed, nonlinear
Alfvén waves can induce compressive perturbations propa-
gating at speeds equal to that of the mother Alfvén wave
(Hollweg 1971; Vasheghani Farahani et al. 2011). In this case,
plasma intensity modulation due to the induced compressive
perturbations should accompany Doppler line broadening.
However, it is not clear, whether this intensity modulation
would differ from the case of MA waves or not. The fact of
the matter is that torsional Alfvén waves in the linear regime
do not initiate a collective process. This means that in the lin-
ear regime all cylindrical surfaces hosting oscillations evolve
independently (Vasheghani Farahani et al. 2010, 2017). For
radially non-uniform profiles of the Alfvén speed in a wave-
hosting loop, such a non-collectivity results in phase-mixing
when the wavefront distorts and smaller spatial scales arise
(Heyvaerts & Priest 1983; Petrukhin et al. 2017; Ruderman
& Petrukhin 2017, 2018; Guo et al. 2019). Moreover, during
phase-mixing, an effective nonlinear excitation of fast waves
propagating across the magnetic field, away from the layer of
phase mixing was reported (Nakariakov et al. 1997). It was
possible to decouple the Alfvén and fast modes in the latter
study due to a 2.5D geometry, which may be less obvious in
full 3D inhomogeneous MHD. A similar result was obtained
for the nonlinear interaction between Alfvénic perturbations
and the solar wind current sheet, resulting in the generation
of compressive perturbations (Malara et al. 1996).

In uniform loops, i.e. in the absence of phase-mixing, the
non-collective nature of torsional Alfvén waves would also
lead to the independence of perturbed cylindrical surfaces.
This means that torsionally perturbed cylindrical layers do
not interact with other layers of the plasma tube. Taking this
into account, Kolotkov et al. (2018) excluded torsional Alfvén
waves as a reason for the observed quasi-periodic modulation
of the radio emission from the solar corona, though the ob-
served speed was about the local Alfvén speed. Nonetheless,
although torsional Alfvén waves are non-collective, the ques-
tion about collectivity/non-collectivity of the plasma den-
sity perturbations that they induce in the nonlinear regime
remains open. In numerical simulations of torsional Alfvén
waves, Shestov et al. (2017) obtained that the nonlinearly in-
duced perturbation of density is apparently radially uniform,
while induced perturbations of other loop parameters have
radial structures prescribed by the radial structure of the
mother Alfvén wave (see their Fig. 2). However, the depen-
dence of the obtained apparent collectivity (via radial unifor-
mity of induced density perturbations) and non-collectivity
(via non-uniformity of other loop parameters) of nonlinear

torsional Alfvén waves on the choice of the Alfvén driver’s
radial structure has not been investigated.
In this paper, we demonstrate that the loop density pertur-

bations induced by nonlinear torsional Alfvén waves remain
uniform in the radial direction (i.e. collective) for both the
Alfvén driver perturbing the entire volume of the magnetic
flux tube and the Alfvén driver localised in a narrow annulus
inside the tube.
In Section 2, we present the model and numerical setup

considered. In Section 3, we describe the obtained numeri-
cal results for the propagation of nonlinear Alfvén waves for
both types of the driver. In Section 4, we provide analytical
interpretation for the results obtained numerically in Section
3. Finally, in Section 5, we summarize our conclusions and
highlight future possible directions stimulated by this study.

2 MODEL AND NUMERICAL SETUP

To investigate the collective/non-collective nature of com-
pressive perturbations induced by torsional Alfvén waves
propagating inside magnetic flux tubes, we solve the set of
ideal dimensionless MHD equations numerically using the as-
trophysical MHD code Athena++ (White et al. 2016; Felker
& Stone 2018; Stone et al. 2020) implementing higher-order
Godunov methods. We should stress that the numerical ex-
periments carried out in the present study aim to shed light
on the basic features of nonlinear effects connected with the
torsional Alfvén waves rather than find how plasma acts un-
der specific set of physical parameters.
The numerical setup of the present study is a follow up

of the work by Shestov et al. (2017). Thus, we consider a
magnetic cylinder, where only axisymmetric motions can ex-
ist. The steady profiles of the axial magnetic field B0(R) and
density ρ0(R) are given by

B0 (R) = B0i

√
1 + 2

(ρ0i − ρ0e)T0

B2
0i

(1− S0 (R)), (1)

ρ0 (R) = ρ0e + (ρ0i − ρ0e)S0 (R) , (2)

where S0 (R) = (coshRα)−2, B0i = 3.16228 is the steady di-
mensionless axial magnetic field inside the magnetic flux tube
(we note that the dimensionless magnetic field in Athena++
is divided by a factor of

√
4π, so that the Alfvén speed

CA = B/
√
ρ), ρ0i = 1 and ρ0e = 0.2 are steady dimen-

sionless densities inside and outside the magnetic flux tube,
respectively, R = r/R0 is the radial coordinate normalized to
the radius of the magnetic flux tube, R0. The temperature
T0 = 1 is the same inside and outside the flux tube. Note that
in this formulation of the problem the dimensionless speed of
sound CSi ≈ 1.29 and dimensionless Alfvén speed inside the
tube CAi ≈ 3.16. In physical units and in the context of the
present study, the magnetic flux tube radius corresponds to
R0 = 1Mm, while we take B0i = 5.9G (plasma-β is about
0.2), T0 = 1MK, with internal and external densities ρ0i and
ρ0e calculated based on the electron number density inside
n0i = 109 cm−3 and outside n0e = 2 × 108 cm−3 the mag-
netic tube. The unit time in numerical simulations is defined
as t0 = R0/

√
kBT0/m ≈ 8.5 s. The function S0 (R) is the

smoothing factor which is implemented to smooth out the
sharp tube boundary, with the parameter α = 20.
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On collective nature of nonlinear torsional Alfvén waves 3

The steady profiles of axial magnetic field and density
which are respectively prescribed by Eqs. (1) and (2) are
shown in Fig. 1.a. To initiate oscillations, the drivers for tor-
sional Alfvén waves are applied at the bottom of the flux tube
as

vφ 1,2 = A0R sin (ωt)S1,2 (R) , (3)

Bφ 1,2 = −√ρ0iA0R sin (ωt)S1,2 (R) , (4)

with

S1 (R) = cosh [(R+ 0.05)α]−2 ,

S2 (R) = exp

[
−
(
R− 1

0.25

)2
]
S1 (R) .

Here, the factor S1 (R) corresponds to the Alfvén driver
linearly increasing with radius, referred to as Driver 1 in
the present study, (see the red curve in Fig. 1.b). The fac-
tor S2 (R) corresponds to the Alfvén driver which repre-
sents a perturbation of a narrow annulus near the magnetic
flux tube boundary, called Driver 2 (see the blue curve in
Fig. 1.b). We set A0 = 0.05 which gives the driver amplitude
A0R0 ≈ 0.01CAi , to avoid wave steepening and other higher-
order nonlinear effects (see e.g. Vasheghani Farahani et al.
2012; Sabri et al. 2020; Magyar et al. 2019; Farahani et al.
2021, regarding Alfvén wave shocks and nonlinear cascading
in structured plasmas). We note that in the present study the
value for the dimensionless frequency ω is selected equal to 2
(i.e. the oscillation period about 30 s). Our choice of Drivers
1 and 2 is motivated by the aim of the present study, which is
to investigate how compressive perturbations are induced in
the case when the Alfvén wave exists in the entire volume of a
magnetic flux tube (Driver 1) and when it is highly localised
in the radial direction (Driver 2).
For both drivers, numerical simulations were carried out us-

ing the following Athena++ settings. The set of MHD equa-
tions was solved using the HLLD Riemann solver. For inte-
gration over time, a van Leer predictor-corrector method was
utilized. The spatial reconstruction was performed using the
piecewise linear method. This ensures second-order accuracy
in time and up to second-order accuracy in space.
The numerical results outlined in Sec. 3 were obtained in

cylindrically symmetric geometry on a 800× 3200 grid along
the radial and axial directions, respectively, with a constant
spatial resolution of ∆R = 0.0025R0 and ∆z = 0.025R0.
That is, the mesh refinement was not applied. During the
study, calculations on coarser grids were also performed, and
the convergence of the results was checked. The perturba-
tions are set with the aforementioned drivers at the bottom
boundary. Outflow (zero-gradient) boundary conditions were
set at the outer radial boundary and the upper boundary of
the computational domain.
The simulations were conducted in two stages. First, we

set up a flux tube based on the aforementioned analytical
formulas and waited for the numerical setup to relax to equi-
librium. In the second stage, a driver was activated to initiate
perturbations.

3 NUMERICAL RESULTS

3.1 “Linear” driver (Driver 1)

The results of our numerical simulations of propagating tor-
sional Alfvén waves in a cylindrical magnetic flux tube are
presented in Fig. 2, where due to axial symmetry, only one
half of the magnetic flux tube is shown. In this simulation,
the Alfvén driver is determined by Eqs. (3) and (4) with sub-
script 1, i.e. Driver 1. This driver corresponds to the case
when the mother Alfvén wave exists in the entire volume of
the magnetic flux tube. The radial profile of this driver is
plotted in red in Fig. 1.b. The perturbation of the azimuthal
velocity ṽφ corresponds to the propagating mother torsional
Alfvén wave. In the vicinity of the tube boundary (R = 1),
we can clearly see the development of phase-mixing effects
because of the presence of the local Alfvén speed gradient. It
can be seen from Fig. 2 that the mother Alfvén wave induces
perturbations of density, axial and radial velocities. These
perturbations propagate at the Alfvén speed inside the flux
tube. On plots for density and axial velocity, one can notice
propagating slow waves in the lower part of the tube. More-
over, fast waves can also be seen on the radial velocity plot
above z ≈ 31.6. It should be noted that the results of our
simulation agree with the results presented by Shestov et al.
(2017).
Due to the fact that the characteristics of the mother

Alfvén wave explicitly depend on the radial coordinate, it
would be natural to expect the induced perturbations to ‘in-
herit’ this dependence. Indeed, it can be seen that all induced
perturbations depend on the radial coordinate, except density
which seems to be radially uniform. To examine this unifor-
mity and highlight other features of the simulations carried
out in the present study, we take a few slices along the tube
axis (see Figs. 3 and 4). Figure 3 shows the perturbations
of density, axial, radial and azimuthal velocities sliced along
the z-axis of a tube for different values of the radial coordi-
nate (all slices are inside the tube). First of all, among the
features highlighted in Fig. 3, it could be noticed that the per-
turbations of density together with perturbations of axial and
radial velocities propagate at the Aflvén speed as the mother
Alfvén wave (perturbation of azimuthal velocity), reaching
z ≈ 31.6 by the time t = 10.. Moreover, these perturbations
are induced with the double of the frequency of the Alfvén
wave. This feature has also been observed regarding stand-
ing waves (Vasheghani Farahani et al. 2011). Also, the fast
sausage wave (see e.g. Edwin & Roberts 1983; Nakariakov
et al. 2003; Vasheghani Farahani et al. 2014; Karamimehr
et al. 2019; Kolotkov et al. 2021) can be observed in the right
part of the plots (z > 31.6) for curves corresponding to den-
sity and radial velocity perturbations. Looking at the density
plot, signatures of a mass flow could be readily observed,
which is not a concern of the present study. At all slices the
perturbations of density have the same value, however, to
show this explicitly, we plotted all axial slices of each param-
eter on separate plots of Fig. 4. As can be seen from Fig. 4, all
z-slices for the density perturbations coincide, except for the
left part of the plot (z < 12.9) where slow waves are present
(see e.g. Ballester 2023, for a recent study of the nonlinear
coupling of Alfvén and slow magnetoacoustic waves). Thus,
the density perturbation induced by the torsional Alfvén wave
is radially uniform. For other plasma parameters shown in
Fig. 4, dependence on the radial coordinate is readily noticed.

MNRAS 000, 1–11 (2023)
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Figure 1. a) Initial profiles of steady axial magnetic field (blue curve) and density (red curve), given by Eqs. (1) and (2), respectively.
b) Radial profiles of the Alfvén wave drivers, given by Eq. (3).

Figure 2. Dimensionless perturbations of density, axial and radial velocities induced by a torsional Alfvén wave (perturbation of the
azimuthal velocity) existing in the whole volume of the waveguide (i.e. with Driver 1, see Fig. 1.b) at dimensionless time t = 10. Due to
axial symmetry, only one half of the magnetic flux tube is shown. The full animation can be seen in supplementary material.
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On collective nature of nonlinear torsional Alfvén waves 5

To visualize these dependencies, we plot an r-slice of the ve-
locity perturbations in Fig. 5. As noticed from our setup, the
perturbations of the azimuthal velocity increase linearly with
the radius. At the same time, the induced perturbations of
axial and radial velocities have parabolic and cubic depen-
dencies on the radial coordinate, respectively, as shown in
Shestov et al. (2017).
Thus, the Alfvén wave driver in the entire flux tube volume

(Driver 1) results in the induced density perturbation that is
uniform in the radial direction. It is in contrast to the non-
collective nature of the mother Alfvén wave and to the evident
radial dependence of other induced plasma perturbations.

3.2 “Annulus” driver (Driver 2)

Figure 6 shows the propagation of the torsional Alfvén wave,
driven by Eqs. (3) and (4) with subscript 2 (i.e. by Driver
2). In this case, the Alfvén wave exists only in a narrow an-
nulus near the boundary of the magnetic flux tube (see the
blue curve in Fig. 1.b). Figure 6 demonstrates that despite
such a localised structure of the mother Alfvén wave driver,
the induced perturbation of density is still radially uniform.
In turn, the perturbations of axial and radial velocities be-
come more narrow in accordance with the structure of the
chosen Alfvén driver. It is worth noting that other features
like phase-mixing and the existence of fast and slow waves
are also observed in this simulation.
One-dimensional z-slices of the plasma parameters plot-

ted in Fig. 7 and Fig. 8 prove that the density perturbation
remains uniform in the radial direction, while other perturba-
tions actually depend on the radial coordinate because of the
radial dependence of the mother Alfvén wave. Radial profiles
of the velocity perturbations are shown in Fig. 9.
The results of both simulations (Figs. 2 and 6) show that

the induced plasma perturbations propagate with a double
frequency of the mother Alfvén wave, as expected. On the
other hand, all induced perturbations reveal dependencies
on the radial coordinate, except the perturbation of density,
which is radially uniform independently of the radial profile
of the Alfvén driver. This numerical finding suggests that the
mechanisms that induce density perturbations and perturba-
tions of other plasma parameters (e.g. axial velocity) may be
different, which we address in detail in Sec. 4.

4 ANALYTICAL INTERPRETATION

To analytically describe how torsional Alfvén waves induce
compressive perturbations, we use the model of the straight
magnetic cylinder and take into account perturbations up
to the second order of smallness. Moreover, we assume that
there are no compressive perturbations in the first order as
they arise due to the mother Alfvén wave. Also, we concen-
trate on Alfvén waves propagating only in one direction. Un-
der these assumptions, we can obtain equations describing
the dynamics of the axial velocity and density perturbations
inside and outside the magnetic flux tube from the set of

Eqs. (A1)–(A10),[(
C2
Ai,e

+ C2
Si,e

)(1

r

∂

∂r

(
r
∂

∂r

))
D̂Ti,e − D̂Ai,eD̂Si,e

]
ṽz =

−
C2
Ai,e

8πρ0i,e

1

r

∂

∂r

(
r
∂

∂r

)
∂2B̃2

φ

∂t∂z
, (5)

[(
C2
Ai,e

+ C2
Si,e

)(1

r

∂

∂r

(
r
∂

∂r

))
D̂Ti,e − D̂Ai,eD̂Si,e

]
ρ̃ = 0,

(6)

where we have D̂j = ∂2/∂t2 − C2
j ∂

2/∂z2. We note that CA,
CS , and CT are respectively the Alfvén, sound, and tube
speeds. Subscripts i and e correspond to the internal and
external media, respectively. Eq. (5) describes how torsional
Alfvén waves induce perturbations of the axial plasma veloc-
ity by a ponderomotive force on the RHS due to the presence
of the term proportional to the magnetic pressure perturba-
tion in the Alfvén wave. In contrast to the thin flux tube
approximation (Vasheghani Farahani et al. 2011; Vasheghani
Farahani et al. 2012), in the considered full MHD model
this ponderomotive term depends on the derivatives in both
the axial and radial directions (see also Nakariakov et al.
1997). Apparently, this radial dependence of the ponderomo-
tive force is responsible for the radial structure of the pertur-
bation. On the other hand, there is no such term on the RHS
of Eq. (6) for density perturbations. This means that the ra-
dially uniform density perturbations seen in our numerical
simulations in Figs. 2 and 6 are induced indirectly via driv-
ing the axial (and apparently radial) velocity by the mother
Alfvén wave. We also note that this model (Eqs. (A1)–(A10)
and Eq. (5)) coincides with that from Scalisi et al. (2021).
A more general model, accounting for the effect of thermal
misbalance, was considered by Belov et al. (2022), in the long-
wavelength limit and using the thin flux tube approximation.
To find out what exactly causes those collective density

perturbations inside the magnetic flux tube, we concentrate
on perturbations of the form F (r, ξ = z − CAit) and rewrite
Eq. (5) as

1

r

∂

∂r

(
r
∂

∂r

)
∂2

∂ξ2

[
ṽz −

B̃2
φ

8πρ0iCAi

]
= 0. (7)

Eq. (7) coincides with Eq. (28) from Scalisi et al. (2021),
where its solution was found in the form ṽz = B̃2

φ/8πρ0iCAi .
In the present study, we provide a more general solution by
integrating Eq. (7) four times,

ṽz =
B̃2
φ

8πρ0iCAi

+A1 (ξ)+A2 (ξ) ln (r)+A3 (r)+A4 (r) ξ, (8)

where Aj are arbitrary functions which should be determined
from the boundary conditions. We set A2 and A4 to zero
because our solution should be limited when r = 0 and ξ →
±∞, respectively. Also, since we assume that ṽz is induced
by the Alfvén wave, then there should be no perturbations
ahead of the Alfvén wave front. This means that we have
ṽz|ξ=0 = 0 for any r. Thus, we also set A3 to zero. As a
result, we can rewrite our solution (8) as

ṽz =
B̃2
φ

8πρ0iCAi

+ V (ξ) . (9)

Here, the arbitrary function V (ξ) should be determined from
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Figure 3. Plasma parameters sliced along the z-axis for different values of the radial coordinate, perturbed by the mother Alfvén wave
driven by Driver 1 (see Fig. 2) at dimensionless time t = 10. Some parameters have been re-scaled for visualizing purposes.

the condition of continuity of the total pressure and radial
velocity at the tube boundary. Next, using Eqs. (A1)–(A10)
together with solution (9) we obtain expressions for other
plasma perturbations induced by the torsional Alfvén wave
inside the magnetic flux tube,

ρ̃ =
ρ0iCAi

C2
Si

V, (10)

P̃T =
ρ0iC

3
Ai

C2
Si

V, (11)

ṽr =

(
C2
Ai
− C2

Si

C2
Si

)
r

2

dV

dξ
− 1

8πρ0iCAi

1

r

∫ r

0

r
∂B̃2

φ

∂ξ
dr. (12)

From Eqs. (10)–(12), it could be noticed that the density
perturbation is proportional to V (ξ) and it does not directly
depend on the mother Alfvén wave. Due to this fact, the
perturbation of density is radially uniform which arises inde-
pendently of the mother Alfvén wave and its radial profile.
This coincides with the numerical results obtained in Sec. 3.
The physical meaning of the function V (ξ) can be understood
from Eqs. (9) and (12). It is an additional axial velocity aris-
ing due to the interaction with the external medium through
the perturbation of the tube boundary.
The mechanism of the density perturbation induction is

secondary to the mechanism of the ponderomotive force (Ver-
wichte et al. 1999) which roots in the radial and axial veloc-
ity perturbations by the mother Alfvén wave. This secondary
mechanism can be explained qualitatively with a concept of a
non-equal elasticity of a magnetic flux tube in the radial and
axial directions, respectively. More specifically, the mother
Alfvén wave induces radial and axial velocity perturbations
which stretch the magnetic flux tube in the corresponding
directions. Moreover, in the radial direction, the tube bound-
ary experiences a reaction from the external medium, thus
making the resulting density perturbations to depend on the
boundary conditions. The exact identification of the param-
eters describing non-equal elasticity has not been conducted
here and is subject to the next study.

Let us illustrate this dependence on the conditions at the
tube boundary using two limiting cases. If the interaction
with the external medium is absent, i.e. the perturbation of
the total pressure P̃T is zero (see e.g. the so-called thin flux
tube approximation, Zhugzhda 1996), it follows from Eq. (11)
that V = 0. Using this and Eq. (10), the perturbation of den-
sity is not induced. Now consider the case that the magnetic
flux tube possesses rigid walls, i.e. perfectly reflecting bound-
aries with ṽr|r=R0

= 0. Then, we can readily determine V (ξ)

MNRAS 000, 1–11 (2023)



On collective nature of nonlinear torsional Alfvén waves 7

r/R0=0.2

r/R0=0.4

r/R0=0.6

r/R0=0.8

0 10 20 30 40 50 60
-0.0002

-0.0001

0.0000

0.0001

0.0002

z/R0

( - 0(r))/ 0(r) z-slice

r/R0=0.2

r/R0=0.4

r/R0=0.6

r/R0=0.8

0 10 20 30 40 50 60
-0.00001

-5.×10-6

0.00000

5.×10-6

0.00001

z/R0

Vr/CAi z-slice

r/R0=0.2

r/R0=0.4

r/R0=0.6

r/R0=0.8

0 10 20 30 40 50 60
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

z/R0

Vϕ/CAi z-slice

r/R0=0.2

r/R0=0.4

r/R0=0.6

r/R0=0.8

0 10 20 30 40 50 60
-0.00010

-0.00005

0.00000

0.00005

0.00010

z/R0

Vz/CAi z-slice

Figure 4. Comparison of the plasma parameters sliced along the z-axis for different values of the radial coordinate (for Driver 1) at
dimensionless time t = 10. Each plot compares axial slices of one parameter, taken at different values of the radial coordinate.
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Figure 5. Plasma velocity perturbations sliced along the radial
coordinate (for Driver 1) at dimensionless time t = 10.

from Eq. (12) as

V =
C2
Si

4πρ0iCAi

(
C2
Ai
− C2

Si

) 1

R2
0

∫ R0

0

rB̃2
φdr. (13)

It is clearly seen from Eq. (13) that V (ξ) and the corre-
sponding perturbations of density ρ̃ (10) are determined by
the interplay between the mother Alfvén wave and the rigid
tube boundary which represents the external medium in this
case, and do not depend on the radial coordinate, r.
In the general case, both conditions set for radial velocity

and total pressure at the tube boundary should be taken into
account. In this case, V (ξ) can be determined via modified
Bessel functions and an effective wavenumber in the radial
direction (see e.g. Andreassen & Maltby 1983, for the case
of field free external medium and sinusoidal Aflvén driver).
The perturbation theory developed here is applicable for all
β, except the case CAi = CSi in which the perturbation am-
plitudes become singular (see e.g. Eq. (13)).

5 SUMMARY AND CONCLUSIONS

An advanced understanding of the processes connected to the
propagation of torsional Alfvén waves in solar coronal plasma
structures is crucial not only for the problems of coronal heat-
ing and solar wind acceleration but also for the revealing
of characteristic observational signatures of Alfvén waves. In
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Figure 6. Dimensionless perturbations of density, axial and radial velocities induced by a torsional Alfvén wave (perturbation of azimuthal
velocity) existing only in a part of the tube volume (i.e. with Driver 2, see Fig. 1.b) at dimensionless time t = 10. Due to axial symmetry,
only one half of the magnetic flux tube is shown. The full animation can be seen in supplementary material.

this regard, we have studied the collectivity of the compres-
sive perturbations induced by the torsional Alfvén waves in a
loop manifested through a uniform radial distribution. Both
analytical and numerical approaches have been used in this
study.
First of all, the numerical simulation of propagating tor-

sional Alfvén waves in a cylindrical magnetic flux tube has
been performed for different Alfvén wave drivers: when the
Alfvén wave exists in the entire volume of a magnetic flux
tube and when it is localized in a narrow annulus near the
tube boundary. It was found that for both drivers, the in-
duced density perturbations are radially uniform, unlike the
perturbations of axial and radial velocities which depend on
the radial coordinate as prescribed by the mother Alfvén
wave.
To interpret our numerical findings, we have developed the

analytical model of a straight magnetic cylinder with pertur-
bations up to the second order of smallness. For the mother
Alfvén wave propagating in one direction, we have obtained
the ponderomotive force term in Eq. (5) describing the axial
velocity perturbations, while this term is absent in Eq. (6)
for density perturbations. Based on this and from the anal-

ysis performed, we conclude that the mechanism of the loop
density perturbation is secondary to the ponderomotive force
mechanism, which arises due to the interaction of the radial
velocity perturbations with the external medium at the loop
boundary. In other words, it can be seen as a non-equal elas-
ticity of the magnetic flux tube in the radial and axial direc-
tions, due to which the appearance of radially uniform den-
sity perturbations in torsional Alfvén waves strongly depends
on the tube boundary conditions. We have provided an ex-
plicit analytical illustration of this dependence in two limiting
cases, which are the loop with no perturbations of the total
pressure at the boundary (i.e. no interaction with the exter-
nal medium, used in e.g. the thin flux tube approximation),
and the loop with perfectly reflecting rigid boundaries (i.e.
no perturbation of the radial velocity). In the former case,
there should be no induced density perturbations, while in
the latter, the perturbation of density is explicitly shown to
have no dependence on the radial coordinate, see Eqs. (10)
and (13). In the general case, the continuity of both the total
pressure and radial velocity should be taken into account.

Hence, we have demonstrated numerically and analytically
that nonlinear torsional Alfvén waves can produce radially

MNRAS 000, 1–11 (2023)
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Figure 7. Plasma parameters sliced along the z-axis for different values of the radial coordinate, perturbed by the mother Alfvén wave
driven by Driver 2 (see Fig. 6) at dimensionless time t = 10. (some parameters have been re-scaled for visualizing purposes).

uniform density perturbations independently of the radial
profile of the mother Alfvén wave. Based on this finding, we
can conclude that this perturbation is collective, in contrast
to the perturbations of axial and radial velocities whose radial
structure is prescribed by that of the mother Alfvén wave and
which are therefore non-collective. The existence of a collec-
tive and radially uniform density perturbation accompanying
torsional Alfvén waves could provide an additional observa-
tional signature of Alfvén waves in the upper layers of the
solar (and stellar) atmosphere.

Since this effect is nonlinear, the amplitude of the in-
duced density perturbations is proportional to the ampli-
tude of the driver squared A2

0 and the plasma parameter β
as A2

0/[4π(1 − β)] (see Eqs. (10) and (13)). We restrict our
study to the regime with β < 1, typical for the solar corona.
In the opposite case of β > 1, we expect to see the slow wave
propagating ahead the Alfvén wave. Hence, the compressive
perturbations induced by the Alfvén waves are not likely to
be observed alone due to the presence of the slow wave (see
e.g. Boynton & Torkelsson 1996, for a 1D illustration). Thus,
for the amplitude of the Alfvén driver 1% of the local Alfvén
speed and β = 0.2 used in this work to avoid other higher-
order nonlinear effects, the amplitude of the density perturba-
tion was found to be just a fraction of a percent. However, for

the Alfvén wave with the amplitude 20% of the local Alfvén
speed and β = 0.6 (see e.g. Tsiklauri et al. 2002), one should
expect to obtain the density perturbation amplitude about
1%. For example, MHD-wave-caused low-amplitude pertur-
bations of the coronal plasma density have been previously
shown to effectively modulate the observed dynamic spectra
of solar radio bursts of various types (see e.g. Kuznetsov 2006;
Karlický et al. 2013; Kolotkov et al. 2018). More specifically,
Kolotkov et al. (2018) showed that the density perturbation
with a relative amplitude of about 1% and propagating at
about the local Alfvén speed in the corona (about 0.7 solar
radii above the surface) can cause up to 200% modulation
of the low-frequency plasma emission intensity. Likewise, the
microwave gyrosynchrotron emission is known to be highly
sensitive to low-amplitude variations of the coronal plasma
parameters (see e.g. Kupriyanova et al. 2022; Shi et al. 2022,
for recent studies). Nonetheless, the forward modelling ac-
counting for a specific emission mechanism and the response
function of a specific observational instrument is needed to
address this question properly, which may constitute an in-
teresting follow-up of this study.
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Figure 9. Plasma velocity perturbations sliced along the radial
coordinate (for Driver 2) at dimensionless time t = 10.
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∂ṽr
∂z

= 0, (A5)

∂B̃φ
∂t
−B0

∂ṽφ
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